
Information
Processing
Letters

EL-SEWER Information Processing Letters 53 (1995) 277-286

Topological properties of the directional hypercube

Mounir Hamdi ’

Department of Computer Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Communicated by R.G. Dromey; received 1 April 1992; revised 1 September 1994

Abstract

The directional hypercube (Dcube) which is a cost-effective variation of the traditional binary hypercube is
introduced and analyzed in this paper. It employs directional (simple duplex) links only. The Dcube is defined and
its key properties are derived including diameter, bandwidth, and connectivity. The diameter is at most 2 greater
than that for a hypercube of the same size; the bandwidth is l/2 that of the hypercube; and the connectivity is
optimal. The Dcube is shown to emulate the binary hypercube with at worst a factor of 4 degradation in time
performance under any message distribution. A simple routing algorithm is demonstrated for the Dcube which
requires only local information to route messages between nodes. Then, the concept of virtual channels has been
added to the routing algorithm to make it deadlock-free.

Keyworu’~: Fault tolerance; Parallel processing; Connectivity; Diameter; Node-disjoint path; Emulation; Routing

1. Introduction

The full duplex (bi-directional) links used to
interconnect nodes in an interconnection network
are more costly than directional links. Bi-direc-
tional link applications either replicate hardware

to provide dedicated directional links or increase
communication time complexity by time-sharing a
link. In our analysis, we assume that each bi-di-
rectional link is implemented by using two dedi-
cated directional links, this is the case in most
practical implementations [151; and that each
switching node communicates with its neighbor-
ing nodes through input and output queues de-

‘Email: hamdi@cs.ust.hk.

noted by I and 0. For a directional interconnec-
tion network, each switching node communicates
with a neighboring node through either an input
queue or an output queue as shown in Fig. 1.
Thus, using directional links, there is a tremen-
dous savings in the number of queues being used
and the hardware associated with them. For more
detailed analysis, please refer to 171. Moreover, as
can be seen from Fig. 1, the number of I/O pins
per chip and the number of I/O ports per board
required for each directional link will be half of
that required by a bi-directional link. Hence, it
would be less costly to build an interconnection
network with directional links than with bi-direc-
tional links especially if the degree of the network
is high such as the hypercube [17].

The architecture of hypercube interconnection
network has achieved a marked popularity in the

0020-0190/95/$09.50 0 1995 Elsevier Science B.V. All rights reserved

SSDI 0020-0190(94)00207-X

278 M. Hamdi /Information Processing Letters 53 (1995) 277-286

4

0

queue1

t

ROUTER
I

queue 2

0 0 queue 3

I

Fig. 1. The organization of a switching node for a directional
interconnection network.

field of parallel computing for many reasons. It
perfectly matches numerous algorithms such as
divide-and-conquer algorithms and the classes of
descend and ascend algorithms [14]. It provides a
rich interconnection structure. Important inter-
connection networks such as the mesh, the pyra-
mid, and the complete binary tree can be effi-
ciently embedded in the hypercube [8,10,18]. It
has a high bandwidth, thus many algorithms re-
quiring a high transfer of data between sections
of the network can be executed efficiently on the
hypercube. Routing messages between nodes in
the hypercube is particularly simple. On receiving
a message, a node need only compare its address
with the message’s destination address. If the
address differs in bit position i, the message
should be sent on the link corresponding to di-
mension i. If the addresses are identical, the
destination has been reached. If there are multi-
ple bit differences, let k be the rightmost bit
(alternatively, leftmost) bit where the two ad-
dresses differ. The message should be sent on the
link corresponding to dimension k [20]. Several
commercial multicomputers based on the hyper-
cube interconnection network have been built
Pll.

The binary hypercube possesses one major lia-
bility despite its many advantages: the number of
connections to each node is high. This makes it

costly to build a hypercube interconnection net-
work. Moreover, packaging technology places a
limit on the number of I/O pins in an integrated
circuit chip, and on the number of I/O ports a
printed circuit board could have. This in turn
places a limit on the number of hypercube nodes
which can be placed in these units. To overcome
this problem, we introduce in this paper an inter-
connection network which is identical to the hy-
percube except that each bi-directional link is
replaced by a directional link in order to reduce
the hardware cost and build larger network sizes.
This interconnection network is referred to as a
directional hypercube (Dcube). A related design
choice has been independently made by Chou
and Du [4]. They proposed two different schemes
for the hypercube when directional links are uti-
lized. However, their routing algorithms are not
conveniently defined, and thus are far more com-
plex than that of the traditional hypercube, possi-
bly producing an intolerable overhead. The rout-
ing algorithm presented in this paper for the
Dcube is as easy and efficient as that for the
traditional hypercube. Moreover, they did not
study important architectural aspects of this in-
terconnection network such as its connectivity to
give some insight into its fault-tolerance, its band-
width to provide an indication of the congestion
to be expected in such a network, and its hyper-
cube emulation to relate the two networks to-
gether. All these aspects are treated in detail in
this paper. Other directional interconnection net-
works have been proposed in [13].

This paper is organized as follows. In Section 2
we define the directional hypercube interconnec-
tion network. In Section 3 we present some of its
key architectural characteristics. In Section 4 we
present an efficient routing algorithm for the
Dcube.

2. Directional hypercubes

A directional hypercube (Dcube) is a tradi-
tional binary hypercube with each bidirectional
link replaced by a directional link. An n-Dcube is
a Dcube with N = 2” PEs (Processing Elements)

M. Hamdi / Information Processing Letters 53 (1995) 277-286 279

where each PE has IZ directional links. Links
used for transmitting messages from a source PE
to other PEs in the Dcube are referred to as
OUT links at the source PE. An incoming link at
a PE is referred to as an IN link. Thus associated
with each link connected to a PE is a direction:
IN or OUT. There are numerous ways of assign-
ing directions to all of the links in the Dcube.
The best assignment would be an assignment that
retains the nice properties of the hypercube in
the Dcube such as small diameter, strong connec-
tivity, high bandwidth, and simple routing. Hence,
assigning directions to the links of a Dcube is a
crucial design choice.

The assignment function which we consider in
this paper assigns the direction of each link de-
pending only on the parity of the address of the
link’s source PE and the link number defined
below. The address of a PE has an even parity if
its binary representation has an even number of
l’s, and it has an odd parity if its binary represen-
tation has an odd number of 1’s. In a Dcube, half
of the nodes have even parity and the other half
have odd parity. Each link has an unsigned link
number, i, which correspond to the bit position
where the addresses of the two nodes connected
to the link differ. The least significant bit of node
addresses is assigned position 0 and i satisfies
0 < i < n - 1. The link direction assignment func-
tion denoted by DZR(A i) takes values IN or
OUT where A is the address of one of the PE’s
to which the
number.

Definition 1.
ing way:
0

0

0

DZR(A, 0) = OUT if A has even parity.
DZRCA, 0) = IN if A has odd parity.
DZRCA, i) = DZRCA, 0) if i is even or
DZR(A, 0)’ if i is odd, where OUT’ = IN and
IN’ = OUT.

link is connected, and i is the link

DZZ?(A, i) is defined in the follow-

Fig. 2 shows a Dcube of size 16 where the
direction of each link is assigned by DZR(A, i).

For each node A, we define an n-bit binary
number, MASK(A), which indicates the IN/OUT
assignment determined by DZR(A, i).

Fig. 2. A directional hypercube of size 16.

Definition 2. MASK(A) is an n-bit binary num-
ber where the ith bit of MASK(A) is 1 if the ith
link of the PE whose address is A is an OUT
link, and 0 otherwise.

It follows that all of the PEs whose addresses
have even parity have the same mask, and all of
the PEs whose addresses have odd parity have
the same mask. For example for n even,
MASK(A) = 01.. .OlOl if A has even parity, and
MASK(A) = 10.. . 1010 if A has odd parity. The
mask of each PE is very useful in routing mes-
sages in the Dcube, as will be seen in Section 4.

3. Characteristics of the Dcuhe

In this section we derive the diameter of the
Dcube. Then, the message transfer capabilities
(bandwidth) of the Dcube will be evaluated in
terms of its bisection bandwidth, and compared
to that of the hypercube. Its connectivity will also
be evaluated as a measure of its fault tolerance.
Finally, the efficiency of emulating the hypercube
on the Dcube will be evaluated.

280 M. Hamdi /Information Processing Letters 53 (1995) 277-286

3.1. Diameter of the Dcube

The diameter of the Dcube is the maximum
number of links that must be traversed in the
shortest path between any two nodes. It is an
important performance measure because it places
a lower bound on the delay required to propagate
information throughout the Dcube. Let A (the
source) and B (the destination) be the addresses
of two arbitrary PEs in an n-Dcube which differ
in L, bit positions. From among these differ-
ences there are L, bits that correspond to IN
links at A and Lo bits that correspond to OUT
links at A, with L,+ Lo = L, in. Proceeding
from A to B, L, and Lo will be alternatively
decreased until they both equal zero (note that
L, and Lo at a certain node would correspond to
Lo and L, respectively at its neighboring node in
the path to the destination because two neighbor-
ing nodes have different parities). There are cer-
tain primitive movements which are useful in
illustrating the diameter of the Dcube. When we
move along an OUT link of A to resolve one of
the Lo differences, we refer to this as a single
link movement. When we wish to resolve a single
L, difference we define a triple link movement to
achieve this.

Definition 3. A triple link movement is the traver-
sal of three links to resolve a single L, difference
between

A = an_lan_2.. . a,. . . alaO and

and

B = 5n_lan_2.. . ai.. . ala,,

where a,_, is the complement of a,,_ 1. Without
loss of generality we assume the L, difference at
link n - 1. First we traverse any OUT link from
A along dimension i to a node with address
Z, =a,_,a,_, . ..C....a,a,. Next we traverse the
OUT link along the dimension where A and B
differ leading to a node at address Zk =
5n_lan_2...5r...a,a,. Finally, we traverse the
OUT link along dimension i to reach B. Z, is
guaranteed to have an OUT link to Zk along the
n - 1 dimension since the parity of Zj is different
from that for A and since the link at dimension

n - 1 is an IN link at A. Z, is guaranteed to have
an OUT link along dimension i since Z, and A
have the same parity and the link at dimension i
at A is an OUT link.

This triple link movement is optimal as shown
in the following proposition.

Proposition 4. Resolution of a single L, difference
between A and B requires a minimum of three link
traversals.

Proof. Let

A = an_lan_2.. . a,. . . alaO and

and

B = zn_lan_2.. . a,. . . ala,,

where the L, difference has been arbitrarily as-
sumed at dimension n - 1. Since the link be-
tween A and B is an IN link at A, we cannot go
from A to B by using a single link. Thus, we
must exist A using an OUT link (at least [n/2]
OUT links always exist at A) to an intermediate
node ZI=a,_,a,_,...~i...a,a,. We cannot go
from I, to B by using a single link since I, and B
differ in two bit positions. Hence, there is no path
of length 1 or 2 from A to B. 0

Thus, there always exists a minimum length
path from A to B, where A and B are at a
Hamming distance 1, which requires either 1 or 3
link traversals. Finally, we define a double link
movement which resolves two L, differences.

Definition 5. A double link movement is the
traversal of four links to resolve two L, differ-
ences between A and B. This movement is the
sequence of a triple link movement to an interme-
diate node Zj, which resolves one of the L, differ-
ences, followed by a single link movement to
resolve the second L, difference. Z, has an OUT
link along the dimension corresponding to the
second L, difference since Zj and A have differ-
ent parities.

This double link movement is optimal for re-
solving two L, differences since the trible link

M. Hamdi / Information Processing Letters 53 (1995) 277-286 281

movement is optimal for resolving one L, differ-
ence leading to:

Corollary 6. Resolution of two L, differences be-
tween A and B requires a minimum of four link
traversals.

Proposition 7. The diameter of an n-Dcube is equal
ton+lifnisevenandn+2ifnisodd.

Proof. Only alternate steps in a path can reduce
L, and the first step cannot reduce L,, thus the
shortest path between A and B should be 2 2L,.
If n is even, the maximum value of L, is n/2,
hence the diameter is > n. If n is odd, the
maximum value of L, is [n/2] + 1 and the diam-
eter is > n + 1. We refine these bounds by con-
structing a minimum length path for arbitrary A
and B which meets or approaches these bounds.
There are three types of movements that will be
used to go from A to B:
(1) Single link movements along an Lo link as

long as Lo # 0. Each of these movements
takes one step and reduces Lo by one.

(2) Double link movements when Lo = 0 and L,
> 1. Each of these movements takes 4 steps
and reduces L, by 2.

(3) Triple link movements when Lo = 0 and L, =
1. Each of these movements takes 3 steps and
reduces L, by 1.

If L, = Lo, only single link movements are re-
quired to go from A to B, and thus the number
of steps needed is equal to 2L,. When L, #Lo,
the above movements will be used to go from A
to B. We can always use single link movements
until Lo = 0. Then if L, > 1 we use double link
movements to reduce L, to 0 or 1, and finally if
L, = 1 one triple link movement is used to get to
B. Thus in the worse case 2(L, - 1) + 3 = 2L, + 1
steps would be needed to go from A to B, and
the diameter is 6 2L, + 1. If n is even, the
maximum value of L, is n/2, and n G diameter
< n + 1. The distance is equal to n + 1 when

L, = n/2 and Lo = n/2 - 1, thus the diameter =
n + 1. If n is odd, the maximum value of L, is
[n/2] + 1, and n + 1 G diameter G n + 2. The dis-
tance is equal to n + 2 when L, = [n/2] + 1 and
Lo = [n/21, thus the diameter = n + 2. q

3.2. Message capacity measures of the Dcube

The ability of an interconnection network to
transfer a high volume of messages from one
section of the network to another in one unit
time is an important measure of performance.
This factor is often used to set lower bounds on
the time complexity of many parallel algorithms
such as sorting and divide-and-conquer algo-
rithms [19]. One measure of message transfer
capability is bisection bandwidth. Bisection band-
width is defined to be the maximum number of
messages sent in one unit time from one half of
the network to the other when the network is
partitioned into two equal halves [9]. The bisec-
tion bandwidth of a hypercube of size N is N/2
when it is partitioned into two equal halves along
any dimension [8].

Proposition 8. The bisection bandwidth of a Dcube
of size N is N/4 when it is partitioned into two
equal halves along any dimension.

Proof. Let us construct an n-Dcube by connecting
two (n - l)-Dcubes together, with the size of
each of the (n - l)-Dcubes being N/2. There
will be N/2 links connecting the two (n - l)-
Dcubes. Among these N/2 links, N/4 links would
be IN links for the first (n - l)-Dcube and OUT
links for the second (n - l)-Dcube. The other
N/4 links would be OUT links for the first (n -
l)-Dcube and IN links for the second (n - 1)
Dcube. This follows since in each (n - l)-Dcube,
there are N/4 PEs who have addresses with even
parity and N/4 PEs who have addresses with odd
parity. Thus, the added links connected to PEs
with different parities have different directions.
Hence, the first (n - l)-Dcube can transfer N/4
messages in one unit time to the second (n - l)-
Dcube, and the second (n - l)-Dcube can trans-
fer N/4 messages in one unit time to the first
(n - l)-Dcube. q

3.3. Connectivity of the Dcube

A strongly connected interconnection network
is an interconnection network that has many dis-
joint paths between processor nodes [17] and
hopefully approaches the upper bound deter-

282 M. Hamdi / Information Processing Letters 53 (1995) 277-286

mined by the degree of the nodes. These disjoint
paths do not share any common nodes or links.
The hypercube has always been recognized as a
strongly connected graph. For a hypercube of size
N, where N = 2”, there are n disjoint paths be-
tween any two nodes [3]. The following proposi-
tion shows that the Dcube is also a strongly
connected network.

Proposition 9. An r&cube has [n/2] disjoint
paths between any two nodes, A and B, and none
of these paths includes more than one node adja-
cent to either A or B.

Proof. By induction on n. For the base case
n = 2, the number of disjoint paths is obviously
equal to 1 and no node is used more than once in
this path. Now assume that Proposition 9 is true
for n = 3, 4, 5,. . . , k. For n = k + 1, let us con-
struct a (k + l)-Dcube by connecting two k-
Dcubes together. When A xor B = k + 1 (A xor B
is the bitwise Exclusive-OR of A and B) then
there are [k + l/2] disjoint paths between them.
This is shown by using the construct in [17] to
first illustrate the existence of k + 1 disjoint paths
in a binary hypercube. It is then easy to show that
each of these paths is composed of links all
directed in the same direction along the path.
The construct for disjoint paths from A to B
follows: these disjoint paths p = 0, 1, 2,. . . , [k +
l/2] are chosen at each step s = 0, 1,. . . , n - 1
along links 2p + s mod n if the source node has
even parity, or along the links 2p + 1 + s mod n
if the source node has odd parity. This guaran-
tees that each path (set of links) is composed of
links all directed in the OUT direction.

When A xor B < k + 1 we can always find a
dimension where A and B are within the same
k-Dcube, A,. By the induction hypothesis we have
[k/2] disjoint paths within A,. When k is even
[k/2] = [k + l/2] and we are done. When k is
odd we need to identify one more disjoint path.
We will construct this path in the other, previ-
ously unused k-Dcube, A,. If A has an OUT link
into A, and B has an IN link from A, then the
last disjoint path is easily constructed in A,. If A
has an IN link into A,, then there exists a node
A, in A, which A has an OUT link to and which
has an OUT link to A,. By the induction hypoth-

esis all but one OUT link of A has been used in
previous disjoint paths and the remaining unused
OUT link is connected to A,. If B has an OUT
link into A,, then there exists a node, B,, in A,
for which B has an IN link and which has an IN
link from A,. By the induction hypothesis all but
one IN link of B has been used in previous
disjoint paths and the remaining unused IN link
is connected to B,. Thus, there is always a dis-
joint path from A into A, and from A, to B;
therefore we can construct our final disjoint path
in A,. Finally, the new path uses only one adja-
cent node of A and B. 0

3.4. Emulation of the hypercube on the Dcube

The commercial availability of hypercube par-
allel computers and their many interesting archi-
tectural properties have attracted extensive re-
search on the design and implementation of par-
allel algorithms for these networks in numerous
areas [2]. A very important property of any paral-
lel network would be the emulation of the hyper-
cube with a small degradation in time perfor-
mance [Ml. This means that all the algorithms
that have been designed for the hypercube can be
executed on the new network without making any
changes on the algorithms themselves. This
amounts to a big savings in time developing new
software for the new architecture, taking advan-
tage of all the efforts that have been put in
designing algorithms for the hypercube. Now we
will try to find the maximum number of steps
needed by the Dcube to emulate a single step of
the hypercube under any message distribution in
the worst case. Hence, we assume that all the
links in the hypercube are active. Since a hyper-
cube of size 2” has n2”-* bidirectional links, the
maximum number of active messages at any sin-
gle step is n2” if each bidirectional link can
transmit two messages, one in each direction in
just one step. Each bidirectional link can be re-
garded as two directional links with opposite di-
rections. Thus in this context the hypercube has
n2” directional links. Half of these links have the
same direction as the related directional links in
the Dcube and exist. The other half have an
opposite direction and do not exist. It would
require the Dcube at least 3 steps to transmit

M. Hamdi / Information Processrng Letters 53 (1995) 277-286 283

messages on hypercube links that do not exist in steps can emulate any step in the hypercube
the Dcube. under any message distribution. 0

Proposition 10. The Dcube can emulate the opera-
tions performed in one step by a hypercube of the
same size in four steps in the worst case.

4. Routing on the Dcube

Proof. Our emulation of the hypercube on the
Dcube is done by separately emulating the move-
ments along the hypercube links that have the
same direction as the related directional links in
the Dcube (e.g. exist in the Dcube) and the
movements along the hypercube links that have
opposite directions as the related directional links
in the Dcube (e.g. do not exist in the Dcube),
respectively, using the following steps:

1. Transmit all the messages on hypercube links
that exist in the Dcube.

2. Transmit all the messages on hypercube links
which do not exist in the Dcube in the follow-
ing way:

When a message is to be routed from one PE
to another, the path it takes is determined by the
routing algorithm. The routing algorithm is exe-
cuted by the originating node and by every other
node in the path to the destination. It is desirable
that the routing algorithm be simple and require
no complete knowledge of the entire network. It
would be convenient by just knowing the source
address and the destination address to obtain the
exact and the shortest sequence of PEs the mes-
sage must traverse to get to its destination [l].
One of the most important reasons for the popu-
larity of the hypercube is the ease and effective-
ness of message routing. One popular routing
algorithm for the hypercube is given below as
Algorithm 1 [20], known as e-cube routing. a. Transmit all messages originating in a pro-

cessor with even parity and going through
the ith link in the hypercube through the
following links in the Dcube:

i.

ii.

Send the message through link i - 1 to
an intermediate processor i,.
Send the message from i, to another
intermediate processor Z, through link

. . .
111. Send the message from I, to the desti-

nation processor through link i - 1.
b. Transmit all messages originating in a pro-

cessor with odd parity and going through
the ith link in the hypercube through the
following links in the Dcube:

i.

ii.

Send the message through link i + 1 to
an intermediate processor I,.
Send the message from I, to another
intermediate processor Z2 through link
i.

. . .
111. Send the message from Z2 to the desti-

nation processor through link i + 1.

The steps in 2.a.i and 2.b.i, 2.a.ii and 2.b.ii, and
2.a.iii and 2.b.iii are each done in parallel in a
total of three steps. It is easy to see that no link
in the Dcube is used by more than one message
within any step. Thus the Dcube in at most four

Algorithm 1. (Send a message from PEl, whose
address is A, to PE2, whose address is B in
hypercube using e-cube routing.)

If (A = B) Then
Send message to local processor

Else
Compute C =A xor B
Starting with the most significant bit of C

Let i be the bit number of the first 1 in C
Send the message on link i

A xor B is the bitwise Exclusive-OR of A and
B. It will also be referred to as the relative
address of A and B.

A useful property of a message routing algo-
rithm is that it does not deadlock [5]. Deadlock
can occur if there is a cyclic dependency for
resources. If two messages each hold resources
required by the other to move, both messages will
be blocked indefinitely. Typically, deadlock is
avoided by the routing algorithm. It has been
shown that e-cube routing, i.e. Algorithm 1, is
deadlock-free [5].

A simple variant of Algorithm 1, described as
Algorithm 2, works for the Dcube.

284 M. Hamdi / Information Processing Letters 53 (1995) 277-286

Algorithm 2. (Send a message from PEl whose
address is A to PE2 whose address is B in a
Dcube.)

If (A = B) Then
Send message to local processor

Else
Compute C = A xor B and MASK(A)

If (C # 0) Then
Starting with the most significant bit of C

Let i be the bit number of the first 1 in C
Send the message on link i

Else
Send the message on the most significant
OUT link in PEl

We define and to be the bitwise AND of two
binary numbers. One of the main and essential
properties of any routing algorithm is its ability to
route a message from a source to a destination
through the shortest path between them. As it
will be proved below, Algorithm 2 routes mes-
sages between any two nodes through the short-
est path between them.

Theorem 11. Given any two disjoint nodes whose
addresses are A and B in a Dcube, Algorithm 2
routes messages between A and B through a short-
est path between them.

Proof. Let reland be the relative address of A
and B anded with MASK(A). We say that reland
sets bit i if bit i of relund is set to 1. There are
two cases that could occur when routing messages
between A and B:

Case 1: At least one bit, i, is set in reland. The
message would be sent through link i of A to a
node which is one dimension closer to B, and the
number of bits set in relund would decrease by 1.

Case 2: There is no bit set in relund. This
means that either we have reached the destina-
tion or all the bit differences between A and B
correspond to IN links in A. Then by using a
triple link movement, the message would travel
through three links to get one dimension closer to
the destination which is the shortest path in this
case as shown in Proposition 4.

Thus Algorithm 2 routes messages between

any two nodes in the Dcube through the shortest
path. q

Researchers have proposed a powerful routing
method to avoid deadlock in interconnection net-
works using the concept of virtual channels [5].
Each group of virtual channels shares a physical
communication channel (link); however, each vir-
tual channel has its own queue [5]. In this case,
deadlock is avoided through the routing algo-
rithm by ordering the interconnection network
virtual channels and requiring that messages re-
quest and use these virtual channels in strictly
monotonic order [5].

To avoid message deadlock in the Dcube, we
also use the concept of virtual channels. Thus, we
split each Dcube physical channel into
(1/2)log(N) + 3 virtual channels where the
Dcube is of size N. Hence, the virtual channels of
each physical channel, j, are denoted by
CX, Ci, C;, . . . , C(1,2),ogov)+2 where we assume C(,
< C{ < C; < * * * < C(1,2),op(N)+2. Moreover, Ci
<C: and C:<C! if j<i and y<x. Then, to
route a message from a source node to a destina-
tion node in the Dcube, the routing algorithm
first selects the physical channel and then it
chooses the virtual channel. We simply use Algo-
rithm 2 for the selection of the physical channel.
Virtual channels are chosen in the following way:

initially, Co,2)log(N)+ 2 channels are used. As long
as the selected physical channels are chosen in a
decreasing order, Co,2),op(N)+2 virtual channels
are chosen. When a physical channel correspond-
ing to a dimension higher than the dimension of
the last traversed physical channel must be used,
the message will take the corresponding
C o/2)log(N)+1 virtual channel. Then, Co,2)log(N)+ 1
virtual channels will be used as long as the physi-
cal channels are employed in a decreasing dimen-
sion order. When a physical channel correspond-
ing to a dimension higher than the dimension of
the last traversed physical channel must be used,
the message will take the corresponding
C o,2)logov) virtual channel. This process contin-
ues until the message reaches its destination.

Obviously, by using the above described rout-
ing strategy, it is possible to establish an ordering
between virtual channels. Hence, the routing al-

M. Hamdi / Information Processing Letters 53 (1995) 277-286 285

gorithm would be deadlock-free [5]. Now, it is
necessary to prove that it will suffice with (l/2)
log(N) + 3 virtual channels per physical channel
to route a message from any source to any desti-
nation. First, each message is routed across use-
ful dimensions in a decreasing order through the
c (i/Vog(N)+2 virtual channels using single link
movements. When we exhaust using all single link
movements and the message has not reached the
destination, then we have to use either a double
link movement or a triple link movement. Remem-
ber that a double link movement is nothing but a
triple link movement followed by a single link
movement. Further, using a triple link movement
to resolve a single L, difference at link i between
any two nodes, A and B, involves crossing the
following dimensions: j, i, j, where j is the most
significant OUT link in A. For more details,
please refer to Section 3. Clearly, the sequence of
physical channels j, i, j are not ordered if they
use the same virtual channels (i.e. Ci, C;, CL>.
Thus, we have to establish an order between
them to avoid deadlock. If A has an odd parity,
then j > i, as it is the most significant bit in A. In
this case, if the previous crossed virtual channel is
k, then we should use the virtual channel k, then
we should use the virtual channel k - 1 of physi-
cal link j (CL_,). Next we use the virtual channel
k - 1 of physical link i <CL _ 1) followed by virtual
channel k - 2 of physical link j (Ci_,). Hence,
the sequence of physical channels j, i, j would be
crossed using the following virtual channels: k -
1, k - 1, k - 2 which preserve the required order
for deadlock-free routing (i.e. CL_ i, CL_ i, Ci_2).
The next step after this triple link movement must
be a single link movement across a link 1 <j or
else we have reached the destination. If we have
to use a single link movement, then we use virtual
link k - 2 of physical link 1 (CL_,). Hence, the
maximum number of virtual channel labels
needed for this double link movement or triple
link movement is 2 (i.e. k - 1, k - 2). This pro-
cess continues until we reach the destination.

On the other hand, if A has an even parity,
then we may have two cases: either i > j or j > i.
If i > j, which may happen only for the first triple
link movement after we exhaust all single link
movements. In this case, if the previous crossed

virtual channel is k, then we should use the
virtual channel k - 1 of physical link j (Ci_,).
Next we use the virtual channel k - 2 of physical
link i (C;_,J followed by virtual channel k - 2 of
physical link j (CL-J Hence, the sequence of
physical channels j, i, j would be crossed using
the following virtual channels: k - 1, k - 2, k - 2
which preserve the required order for deadlock-
free routing (i.e. CL_,, C;_,, C&,). The next
step after this triple link movement must be a
single link movement across a link I< j or else we
have reached the destination. If we have to use a
single link movement, then we use virtual link
k - 2 of physical link 1 (CL_,>. Hence, the maxi-
mum number of virtual channel labels needed for
this double link movement or triple link movement
is 2. If j > i, then if the previous crossed virtual
channel is k, then we should use the virtual
channel k - 1 of physical link j (Ci_,). Next we
use the virtual channel k - 1 of physical link i
CC;_ 1) followed by virtual channel k - 2 of physi-
cal link j (CL_,). Hence, the sequence of physical
channels j, i, j would be crossed using the follow-
ing virtual channels: k - 1, k - 1, k - 2 which
preserve the required order for deadlock-free
routing (i.e. CL_,, CL_,, Ci_,). The next step
after this triple link movement must be a single
link movement across a link 1 <j or else we have
reached the destination. If we have to use a single
link movement, then we use virtual link k - 2 of
physical link 1 (CL_,>. Hence, the maximum
number of virtual channel labels needed for this
double link moLlement or triple link movement is 2
(i.e. k - 1, k - 2). Thus, in all cases, whenever we
need to use a triple link movement (double link
movement), we must use 2 different virtual chan-
nel labels to preserve the channel ordering.

Therefore, in order to determine the maxi-
mum number of virtual channels per physical
channel, we have to determine the maximum
number of triple link movements needed to route
a message between any two nodes in the Dcube.
Referring to Section 3, we can easily deduce that
the maximum number of triple link movements
between any two nodes, A and B, happens when
Lo < L, and Lo is equal to IL,/21 + 1 =
(1/4)log(N) + 1. H ence, the total number of vir-
tual channels needed to route a message between

286 M. Hamdi / Information Processing Letters 53 (I 995) 277-286

any two nodes in the Dcube in a deadlock-free
manner is 1 + [(1/2)log(N) + 21 where the first
term, 1, corresponds to the number of virtual
channels needed for the single link movements,
and the second term, (1/2)log(N) + 2, corre-
sponds to the number of virtual channels needed
for the double link movements, and consequently
the triple link movements. Consequently, if the
size of the Dcube is Llery large, this would require
a large number of virtual channels per physical
channel in the Dcube to achieve deadlock-free
routing. This is one of the major drawbacks of the
Dcube. It would be very interesting as a future
research direction to find the optimum arrange-
ments of directional links in the Dcube that would
lead to the least number of virtual channels per
physical channel to achieve deadlock-free rout-
ing.

5. Conclusion

We have presented a variation of the hyper-
cube interconnection network where each bidi-
rectional link is replaced by a directional link.
The directional hypercube is shown to preserve
the nice properties of the hypercube such as
small diameter, high bandwidth, and strong con-
nectivity. We have shown that the Dcube can
emulate the hypercube with a small constant
degradation in time performance under any mes-
sage distribution. A simple routing algorithm has
been derived for the Dcube requiring only local
information to route messages between nodes,
and it is just a variation of the original routing
algorithm for the hypercube. Then, the concept
of virtual channels has been added to the routing
algorithm to make it deadlock-free. Thus, the
Dcube may have some potential as a lower cost
substitute for the binary hypercube in many ap-
plications.

References

[l] D.P. Agrawal, V.K. Janakiram and G.C. Pathak, Evaluat-

ing the performance of multicomputer configurations,

IEEE Computer 19 (1986) 23-37.

121

[31

[41

[Sl

161

[71

[81

[91

[lOI

[Ill

[I21

[131

[141

[151

U61

[171

[I81

[I91

[201

[211

S.G. Akl, The Design and Analysis of Parallel Algorithms
(Prentice-Hall, Englewood Cliffs, NJ, 1989).

J.R. Armstrong and F.G. Gray, Fault diagnosis in a

Boolean n-cube array of microprocessors, IEEE Trans.
Comput. 30 (1981) 587-590.

C.H. Chou and D.H.C. Du, Uni-directional hypercubes

in: Supercomputing 90 (1990) 254-263.

W. Dally and C. Seitz, Deadlock-free message routing in

multiprocessor interconnection networks, IEEE Trans.
Comput. 36 (1987) 547-553.
S.A. Felperin, L. Gravano and J.L.C. Sanz, Routing

techniques for massively parallel communication, Proc.
IEEE 79 (1991) 488-503.
M. Hamdi, Cost-effectiveness of directional interconnec-

tion networks for parallel computer systems, IEEE Trans.
Comput., submitted for publication.

M. Hamdi and R.W. Hall, Compound graph networks for

parallel image processing, in: Proc. 1991 Workshop on
Computer Architecture for Machine Perception (1991)
365-377.
L.H. Jamieson, D.B. Gannon and R.J. Douglass, eds.,

The Charactertsttcs of Parallel Algorithms (MIT Press,

Cambridge. MA, 1987).

S.L. Johnsson, Communication efficient basic linear alge-

bra computations on hypercube architectures, J. Parallel
Distnbuted Comput. 4 (1987) 133-171.
S. Konstantinidou and L. Snyder, Chaos router: A practi-

cal application of randomization in network routing, in:

Proc. Symp. on Parallel Algonthms and Architectures
(1990) 21-30.
S. Konstantinidou and L. Snyder, Chaos router: Archi-

tecture and performance, in: Proc. 18th Intemat. Symp.
on Computer Architecture (1991) 212-221.
A. Maxemchuck, Regular and mesh topologies in local

and metropolitan area networks, AT & T Tech. J. 64

(19851 1659-1686.

F.P. Preparata and J. Vuillemin. The cube-connected

cycles: A versatile network for parallel computations,

Comm. ACM. 24 (1981) 300-309.
D.A. Reed and R.M. Fujimoto, Multicomputer Networks:
Message-Based Parallel Processing (MIT Press, Cam-

bridge, MA, 19871.

D.A. Reed and G. Fox, Adaptive packet routing in a

hypercube in: Proc. 3rd Conf on Hypercube Concurrent
Computers and Applications (1988) 334-341.
Y. Saad and M.H. Schultz, Topological properties of

hypercubes, IEEE Trans. Comput. 37 (1988) 867-872.
Q.F. Stout, Mapping vision algorithms to parallel archi-
tectures, IEEE Proc. 76 (1988) 982-995.
Q.F. Stout, Supporting divide-and-conquer algorithms for
image processing, J. Parallel Distributed Comput. 4 (1987)
95-11.5.
H. Sullivan and T.R. Bashkow, A large scale homoge-
neous, fully distributed parallel machine, I, in: Proc. 4th
Symp. on Computer Architecture (1977) 105-117.
A. Trew and G. Wilson, eds., Past, Present, Parallel: A
Survey of Avadable Parallel Computer Systems (Springer,
New York, 1991).

