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Abstract 

The directional hypercube (Dcube) which is a cost-effective variation of the traditional binary hypercube is 
introduced and analyzed in this paper. It employs directional (simple duplex) links only. The Dcube is defined and 
its key properties are derived including diameter, bandwidth, and connectivity. The diameter is at most 2 greater 
than that for a hypercube of the same size; the bandwidth is l/2 that of the hypercube; and the connectivity is 
optimal. The Dcube is shown to emulate the binary hypercube with at worst a factor of 4 degradation in time 
performance under any message distribution. A simple routing algorithm is demonstrated for the Dcube which 
requires only local information to route messages between nodes. Then, the concept of virtual channels has been 
added to the routing algorithm to make it deadlock-free. 
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1. Introduction 

The full duplex (bi-directional) links used to 
interconnect nodes in an interconnection network 
are more costly than directional links. Bi-direc- 
tional link applications either replicate hardware 

to provide dedicated directional links or increase 
communication time complexity by time-sharing a 
link. In our analysis, we assume that each bi-di- 
rectional link is implemented by using two dedi- 
cated directional links, this is the case in most 
practical implementations [151; and that each 
switching node communicates with its neighbor- 
ing nodes through input and output queues de- 
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noted by I and 0. For a directional interconnec- 
tion network, each switching node communicates 
with a neighboring node through either an input 
queue or an output queue as shown in Fig. 1. 
Thus, using directional links, there is a tremen- 
dous savings in the number of queues being used 
and the hardware associated with them. For more 
detailed analysis, please refer to 171. Moreover, as 
can be seen from Fig. 1, the number of I/O pins 
per chip and the number of I/O ports per board 
required for each directional link will be half of 
that required by a bi-directional link. Hence, it 
would be less costly to build an interconnection 
network with directional links than with bi-direc- 
tional links especially if the degree of the network 
is high such as the hypercube [17]. 

The architecture of hypercube interconnection 
network has achieved a marked popularity in the 
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Fig. 1. The organization of a switching node for a directional 
interconnection network. 

field of parallel computing for many reasons. It 
perfectly matches numerous algorithms such as 
divide-and-conquer algorithms and the classes of 
descend and ascend algorithms [14]. It provides a 
rich interconnection structure. Important inter- 
connection networks such as the mesh, the pyra- 
mid, and the complete binary tree can be effi- 
ciently embedded in the hypercube [8,10,18]. It 
has a high bandwidth, thus many algorithms re- 
quiring a high transfer of data between sections 
of the network can be executed efficiently on the 
hypercube. Routing messages between nodes in 
the hypercube is particularly simple. On receiving 
a message, a node need only compare its address 
with the message’s destination address. If the 
address differs in bit position i, the message 
should be sent on the link corresponding to di- 
mension i. If the addresses are identical, the 
destination has been reached. If there are multi- 
ple bit differences, let k be the rightmost bit 
(alternatively, leftmost) bit where the two ad- 
dresses differ. The message should be sent on the 
link corresponding to dimension k [20]. Several 
commercial multicomputers based on the hyper- 
cube interconnection network have been built 
Pll. 

The binary hypercube possesses one major lia- 
bility despite its many advantages: the number of 
connections to each node is high. This makes it 

costly to build a hypercube interconnection net- 
work. Moreover, packaging technology places a 
limit on the number of I/O pins in an integrated 
circuit chip, and on the number of I/O ports a 
printed circuit board could have. This in turn 
places a limit on the number of hypercube nodes 
which can be placed in these units. To overcome 
this problem, we introduce in this paper an inter- 
connection network which is identical to the hy- 
percube except that each bi-directional link is 
replaced by a directional link in order to reduce 
the hardware cost and build larger network sizes. 
This interconnection network is referred to as a 
directional hypercube (Dcube). A related design 
choice has been independently made by Chou 
and Du [4]. They proposed two different schemes 
for the hypercube when directional links are uti- 
lized. However, their routing algorithms are not 
conveniently defined, and thus are far more com- 
plex than that of the traditional hypercube, possi- 
bly producing an intolerable overhead. The rout- 
ing algorithm presented in this paper for the 
Dcube is as easy and efficient as that for the 
traditional hypercube. Moreover, they did not 
study important architectural aspects of this in- 
terconnection network such as its connectivity to 
give some insight into its fault-tolerance, its band- 
width to provide an indication of the congestion 
to be expected in such a network, and its hyper- 
cube emulation to relate the two networks to- 
gether. All these aspects are treated in detail in 
this paper. Other directional interconnection net- 
works have been proposed in [13]. 

This paper is organized as follows. In Section 2 
we define the directional hypercube interconnec- 
tion network. In Section 3 we present some of its 
key architectural characteristics. In Section 4 we 
present an efficient routing algorithm for the 
Dcube. 

2. Directional hypercubes 

A directional hypercube (Dcube) is a tradi- 
tional binary hypercube with each bidirectional 
link replaced by a directional link. An n-Dcube is 
a Dcube with N = 2” PEs (Processing Elements) 
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where each PE has IZ directional links. Links 
used for transmitting messages from a source PE 
to other PEs in the Dcube are referred to as 
OUT links at the source PE. An incoming link at 
a PE is referred to as an IN link. Thus associated 
with each link connected to a PE is a direction: 
IN or OUT. There are numerous ways of assign- 
ing directions to all of the links in the Dcube. 
The best assignment would be an assignment that 
retains the nice properties of the hypercube in 
the Dcube such as small diameter, strong connec- 
tivity, high bandwidth, and simple routing. Hence, 
assigning directions to the links of a Dcube is a 
crucial design choice. 

The assignment function which we consider in 
this paper assigns the direction of each link de- 
pending only on the parity of the address of the 
link’s source PE and the link number defined 
below. The address of a PE has an even parity if 
its binary representation has an even number of 
l’s, and it has an odd parity if its binary represen- 
tation has an odd number of 1’s. In a Dcube, half 
of the nodes have even parity and the other half 
have odd parity. Each link has an unsigned link 
number, i, which correspond to the bit position 
where the addresses of the two nodes connected 
to the link differ. The least significant bit of node 
addresses is assigned position 0 and i satisfies 
0 < i < n - 1. The link direction assignment func- 
tion denoted by DZR(A i) takes values IN or 
OUT where A is the address of one of the PE’s 
to which the 
number. 

Definition 1. 
ing way: 
0 

0 

0 

DZR( A, 0) = OUT if A has even parity. 
DZRCA, 0) = IN if A has odd parity. 
DZRCA, i) = DZRCA, 0) if i is even or 
DZR(A, 0)’ if i is odd, where OUT’ = IN and 
IN’ = OUT. 

link is connected, and i is the link 

DZZ?(A, i) is defined in the follow- 

Fig. 2 shows a Dcube of size 16 where the 
direction of each link is assigned by DZR(A, i). 

For each node A, we define an n-bit binary 
number, MASK(A), which indicates the IN/OUT 
assignment determined by DZR( A, i). 

Fig. 2. A directional hypercube of size 16. 

Definition 2. MASK(A) is an n-bit binary num- 
ber where the ith bit of MASK(A) is 1 if the ith 
link of the PE whose address is A is an OUT 
link, and 0 otherwise. 

It follows that all of the PEs whose addresses 
have even parity have the same mask, and all of 
the PEs whose addresses have odd parity have 
the same mask. For example for n even, 
MASK(A) = 01.. .OlOl if A has even parity, and 
MASK(A) = 10.. . 1010 if A has odd parity. The 
mask of each PE is very useful in routing mes- 
sages in the Dcube, as will be seen in Section 4. 

3. Characteristics of the Dcuhe 

In this section we derive the diameter of the 
Dcube. Then, the message transfer capabilities 
(bandwidth) of the Dcube will be evaluated in 
terms of its bisection bandwidth, and compared 
to that of the hypercube. Its connectivity will also 
be evaluated as a measure of its fault tolerance. 
Finally, the efficiency of emulating the hypercube 
on the Dcube will be evaluated. 
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3.1. Diameter of the Dcube 

The diameter of the Dcube is the maximum 
number of links that must be traversed in the 
shortest path between any two nodes. It is an 
important performance measure because it places 
a lower bound on the delay required to propagate 
information throughout the Dcube. Let A (the 
source) and B (the destination) be the addresses 
of two arbitrary PEs in an n-Dcube which differ 
in L, bit positions. From among these differ- 
ences there are L, bits that correspond to IN 
links at A and Lo bits that correspond to OUT 
links at A, with L,+ Lo = L, in. Proceeding 
from A to B, L, and Lo will be alternatively 
decreased until they both equal zero (note that 
L, and Lo at a certain node would correspond to 
Lo and L, respectively at its neighboring node in 
the path to the destination because two neighbor- 
ing nodes have different parities). There are cer- 
tain primitive movements which are useful in 
illustrating the diameter of the Dcube. When we 
move along an OUT link of A to resolve one of 
the Lo differences, we refer to this as a single 
link movement. When we wish to resolve a single 
L, difference we define a triple link movement to 
achieve this. 

Definition 3. A triple link movement is the traver- 
sal of three links to resolve a single L, difference 
between 

A = an_lan_2.. . a,. . . alaO and 

and 

B = 5n_lan_2.. . ai.. . ala,, 

where a,_, is the complement of a,,_ 1. Without 
loss of generality we assume the L, difference at 
link n - 1. First we traverse any OUT link from 
A along dimension i to a node with address 
Z, =a,_,a,_, . ..C....a,a,. Next we traverse the 
OUT link along the dimension where A and B 
differ leading to a node at address Zk = 
5n_lan_2...5r...a,a,. Finally, we traverse the 
OUT link along dimension i to reach B. Z, is 
guaranteed to have an OUT link to Zk along the 
n - 1 dimension since the parity of Zj is different 
from that for A and since the link at dimension 

n - 1 is an IN link at A. Z, is guaranteed to have 
an OUT link along dimension i since Z, and A 
have the same parity and the link at dimension i 
at A is an OUT link. 

This triple link movement is optimal as shown 
in the following proposition. 

Proposition 4. Resolution of a single L, difference 
between A and B requires a minimum of three link 
traversals. 

Proof. Let 

A = an_lan_2.. . a,. . . alaO and 

and 

B = zn_lan_2.. . a,. . . ala,, 

where the L, difference has been arbitrarily as- 
sumed at dimension n - 1. Since the link be- 
tween A and B is an IN link at A, we cannot go 
from A to B by using a single link. Thus, we 
must exist A using an OUT link (at least [n/2] 
OUT links always exist at A) to an intermediate 
node ZI=a,_,a,_,...~i...a,a,. We cannot go 
from I, to B by using a single link since I, and B 
differ in two bit positions. Hence, there is no path 
of length 1 or 2 from A to B. 0 

Thus, there always exists a minimum length 
path from A to B, where A and B are at a 
Hamming distance 1, which requires either 1 or 3 
link traversals. Finally, we define a double link 
movement which resolves two L, differences. 

Definition 5. A double link movement is the 
traversal of four links to resolve two L, differ- 
ences between A and B. This movement is the 
sequence of a triple link movement to an interme- 
diate node Zj, which resolves one of the L, differ- 
ences, followed by a single link movement to 
resolve the second L, difference. Z, has an OUT 
link along the dimension corresponding to the 
second L, difference since Zj and A have differ- 
ent parities. 

This double link movement is optimal for re- 
solving two L, differences since the trible link 
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movement is optimal for resolving one L, differ- 
ence leading to: 

Corollary 6. Resolution of two L, differences be- 
tween A and B requires a minimum of four link 
traversals. 

Proposition 7. The diameter of an n-Dcube is equal 
ton+lifnisevenandn+2ifnisodd. 

Proof. Only alternate steps in a path can reduce 
L, and the first step cannot reduce L,, thus the 
shortest path between A and B should be 2 2L,. 
If n is even, the maximum value of L, is n/2, 
hence the diameter is > n. If n is odd, the 
maximum value of L, is [n/2] + 1 and the diam- 
eter is > n + 1. We refine these bounds by con- 
structing a minimum length path for arbitrary A 
and B which meets or approaches these bounds. 
There are three types of movements that will be 
used to go from A to B: 
(1) Single link movements along an Lo link as 

long as Lo # 0. Each of these movements 
takes one step and reduces Lo by one. 

(2) Double link movements when Lo = 0 and L, 
> 1. Each of these movements takes 4 steps 
and reduces L, by 2. 

(3) Triple link movements when Lo = 0 and L, = 
1. Each of these movements takes 3 steps and 
reduces L, by 1. 

If L, = Lo, only single link movements are re- 
quired to go from A to B, and thus the number 
of steps needed is equal to 2L,. When L, #Lo, 
the above movements will be used to go from A 
to B. We can always use single link movements 
until Lo = 0. Then if L, > 1 we use double link 
movements to reduce L, to 0 or 1, and finally if 
L, = 1 one triple link movement is used to get to 
B. Thus in the worse case 2(L, - 1) + 3 = 2L, + 1 
steps would be needed to go from A to B, and 
the diameter is 6 2L, + 1. If n is even, the 
maximum value of L, is n/2, and n G diameter 
< n + 1. The distance is equal to n + 1 when 

L, = n/2 and Lo = n/2 - 1, thus the diameter = 
n + 1. If n is odd, the maximum value of L, is 
[n/2] + 1, and n + 1 G diameter G n + 2. The dis- 
tance is equal to n + 2 when L, = [n/2] + 1 and 
Lo = [n/21, thus the diameter = n + 2. q 

3.2. Message capacity measures of the Dcube 

The ability of an interconnection network to 
transfer a high volume of messages from one 
section of the network to another in one unit 
time is an important measure of performance. 
This factor is often used to set lower bounds on 
the time complexity of many parallel algorithms 
such as sorting and divide-and-conquer algo- 
rithms [19]. One measure of message transfer 
capability is bisection bandwidth. Bisection band- 
width is defined to be the maximum number of 
messages sent in one unit time from one half of 
the network to the other when the network is 
partitioned into two equal halves [9]. The bisec- 
tion bandwidth of a hypercube of size N is N/2 
when it is partitioned into two equal halves along 
any dimension [8]. 

Proposition 8. The bisection bandwidth of a Dcube 
of size N is N/4 when it is partitioned into two 
equal halves along any dimension. 

Proof. Let us construct an n-Dcube by connecting 
two (n - l)-Dcubes together, with the size of 
each of the (n - l)-Dcubes being N/2. There 
will be N/2 links connecting the two (n - l)- 
Dcubes. Among these N/2 links, N/4 links would 
be IN links for the first (n - l)-Dcube and OUT 
links for the second (n - l)-Dcube. The other 
N/4 links would be OUT links for the first (n - 
l)-Dcube and IN links for the second (n - 1) 
Dcube. This follows since in each (n - l)-Dcube, 
there are N/4 PEs who have addresses with even 
parity and N/4 PEs who have addresses with odd 
parity. Thus, the added links connected to PEs 
with different parities have different directions. 
Hence, the first (n - l)-Dcube can transfer N/4 
messages in one unit time to the second (n - l)- 
Dcube, and the second (n - l)-Dcube can trans- 
fer N/4 messages in one unit time to the first 
(n - l)-Dcube. q 

3.3. Connectivity of the Dcube 

A strongly connected interconnection network 
is an interconnection network that has many dis- 
joint paths between processor nodes [17] and 
hopefully approaches the upper bound deter- 
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mined by the degree of the nodes. These disjoint 
paths do not share any common nodes or links. 
The hypercube has always been recognized as a 
strongly connected graph. For a hypercube of size 
N, where N = 2”, there are n disjoint paths be- 
tween any two nodes [3]. The following proposi- 
tion shows that the Dcube is also a strongly 
connected network. 

Proposition 9. An r&cube has [n/2] disjoint 
paths between any two nodes, A and B, and none 
of these paths includes more than one node adja- 
cent to either A or B. 

Proof. By induction on n. For the base case 
n = 2, the number of disjoint paths is obviously 
equal to 1 and no node is used more than once in 
this path. Now assume that Proposition 9 is true 
for n = 3, 4, 5,. . . , k. For n = k + 1, let us con- 
struct a (k + l)-Dcube by connecting two k- 
Dcubes together. When A xor B = k + 1 (A xor B 
is the bitwise Exclusive-OR of A and B) then 
there are [k + l/2] disjoint paths between them. 
This is shown by using the construct in [17] to 
first illustrate the existence of k + 1 disjoint paths 
in a binary hypercube. It is then easy to show that 
each of these paths is composed of links all 
directed in the same direction along the path. 
The construct for disjoint paths from A to B 
follows: these disjoint paths p = 0, 1, 2,. . . , [k + 
l/2] are chosen at each step s = 0, 1,. . . , n - 1 
along links 2p + s mod n if the source node has 
even parity, or along the links 2p + 1 + s mod n 
if the source node has odd parity. This guaran- 
tees that each path (set of links) is composed of 
links all directed in the OUT direction. 

When A xor B < k + 1 we can always find a 
dimension where A and B are within the same 
k-Dcube, A,. By the induction hypothesis we have 
[k/2] disjoint paths within A,. When k is even 
[k/2] = [k + l/2] and we are done. When k is 
odd we need to identify one more disjoint path. 
We will construct this path in the other, previ- 
ously unused k-Dcube, A,. If A has an OUT link 
into A, and B has an IN link from A, then the 
last disjoint path is easily constructed in A,. If A 
has an IN link into A,, then there exists a node 
A, in A, which A has an OUT link to and which 
has an OUT link to A,. By the induction hypoth- 

esis all but one OUT link of A has been used in 
previous disjoint paths and the remaining unused 
OUT link is connected to A,. If B has an OUT 
link into A,, then there exists a node, B,, in A, 
for which B has an IN link and which has an IN 
link from A,. By the induction hypothesis all but 
one IN link of B has been used in previous 
disjoint paths and the remaining unused IN link 
is connected to B,. Thus, there is always a dis- 
joint path from A into A, and from A, to B; 
therefore we can construct our final disjoint path 
in A,. Finally, the new path uses only one adja- 
cent node of A and B. 0 

3.4. Emulation of the hypercube on the Dcube 

The commercial availability of hypercube par- 
allel computers and their many interesting archi- 
tectural properties have attracted extensive re- 
search on the design and implementation of par- 
allel algorithms for these networks in numerous 
areas [2]. A very important property of any paral- 
lel network would be the emulation of the hyper- 
cube with a small degradation in time perfor- 
mance [Ml. This means that all the algorithms 
that have been designed for the hypercube can be 
executed on the new network without making any 
changes on the algorithms themselves. This 
amounts to a big savings in time developing new 
software for the new architecture, taking advan- 
tage of all the efforts that have been put in 
designing algorithms for the hypercube. Now we 
will try to find the maximum number of steps 
needed by the Dcube to emulate a single step of 
the hypercube under any message distribution in 
the worst case. Hence, we assume that all the 
links in the hypercube are active. Since a hyper- 
cube of size 2” has n2”-* bidirectional links, the 
maximum number of active messages at any sin- 
gle step is n2” if each bidirectional link can 
transmit two messages, one in each direction in 
just one step. Each bidirectional link can be re- 
garded as two directional links with opposite di- 
rections. Thus in this context the hypercube has 
n2” directional links. Half of these links have the 
same direction as the related directional links in 
the Dcube and exist. The other half have an 
opposite direction and do not exist. It would 
require the Dcube at least 3 steps to transmit 



M. Hamdi / Information Processrng Letters 53 (1995) 277-286 283 

messages on hypercube links that do not exist in steps can emulate any step in the hypercube 
the Dcube. under any message distribution. 0 

Proposition 10. The Dcube can emulate the opera- 
tions performed in one step by a hypercube of the 
same size in four steps in the worst case. 

4. Routing on the Dcube 

Proof. Our emulation of the hypercube on the 
Dcube is done by separately emulating the move- 
ments along the hypercube links that have the 
same direction as the related directional links in 
the Dcube (e.g. exist in the Dcube) and the 
movements along the hypercube links that have 
opposite directions as the related directional links 
in the Dcube (e.g. do not exist in the Dcube), 
respectively, using the following steps: 

1. Transmit all the messages on hypercube links 
that exist in the Dcube. 

2. Transmit all the messages on hypercube links 
which do not exist in the Dcube in the follow- 
ing way: 

When a message is to be routed from one PE 
to another, the path it takes is determined by the 
routing algorithm. The routing algorithm is exe- 
cuted by the originating node and by every other 
node in the path to the destination. It is desirable 
that the routing algorithm be simple and require 
no complete knowledge of the entire network. It 
would be convenient by just knowing the source 
address and the destination address to obtain the 
exact and the shortest sequence of PEs the mes- 
sage must traverse to get to its destination [l]. 
One of the most important reasons for the popu- 
larity of the hypercube is the ease and effective- 
ness of message routing. One popular routing 
algorithm for the hypercube is given below as 
Algorithm 1 [20], known as e-cube routing. a. Transmit all messages originating in a pro- 

cessor with even parity and going through 
the ith link in the hypercube through the 
following links in the Dcube: 

i. 

ii. 

Send the message through link i - 1 to 
an intermediate processor i,. 
Send the message from i, to another 
intermediate processor Z, through link 

. . . 
111. Send the message from I, to the desti- 

nation processor through link i - 1. 
b. Transmit all messages originating in a pro- 

cessor with odd parity and going through 
the ith link in the hypercube through the 
following links in the Dcube: 

i. 

ii. 

Send the message through link i + 1 to 
an intermediate processor I,. 
Send the message from I, to another 
intermediate processor Z2 through link 
i. 

. . . 
111. Send the message from Z2 to the desti- 

nation processor through link i + 1. 

The steps in 2.a.i and 2.b.i, 2.a.ii and 2.b.ii, and 
2.a.iii and 2.b.iii are each done in parallel in a 
total of three steps. It is easy to see that no link 
in the Dcube is used by more than one message 
within any step. Thus the Dcube in at most four 

Algorithm 1. (Send a message from PEl, whose 
address is A, to PE2, whose address is B in 
hypercube using e-cube routing.) 

If (A = B) Then 
Send message to local processor 

Else 
Compute C =A xor B 
Starting with the most significant bit of C 

Let i be the bit number of the first 1 in C 
Send the message on link i 

A xor B is the bitwise Exclusive-OR of A and 
B. It will also be referred to as the relative 
address of A and B. 

A useful property of a message routing algo- 
rithm is that it does not deadlock [5]. Deadlock 
can occur if there is a cyclic dependency for 
resources. If two messages each hold resources 
required by the other to move, both messages will 
be blocked indefinitely. Typically, deadlock is 
avoided by the routing algorithm. It has been 
shown that e-cube routing, i.e. Algorithm 1, is 
deadlock-free [5]. 

A simple variant of Algorithm 1, described as 
Algorithm 2, works for the Dcube. 
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Algorithm 2. (Send a message from PEl whose 
address is A to PE2 whose address is B in a 
Dcube.) 

If (A = B) Then 
Send message to local processor 

Else 
Compute C = A xor B and MASK(A) 

If (C # 0) Then 
Starting with the most significant bit of C 

Let i be the bit number of the first 1 in C 
Send the message on link i 

Else 
Send the message on the most significant 
OUT link in PEl 

We define and to be the bitwise AND of two 
binary numbers. One of the main and essential 
properties of any routing algorithm is its ability to 
route a message from a source to a destination 
through the shortest path between them. As it 
will be proved below, Algorithm 2 routes mes- 
sages between any two nodes through the short- 
est path between them. 

Theorem 11. Given any two disjoint nodes whose 
addresses are A and B in a Dcube, Algorithm 2 
routes messages between A and B through a short- 
est path between them. 

Proof. Let reland be the relative address of A 
and B anded with MASK(A). We say that reland 
sets bit i if bit i of relund is set to 1. There are 
two cases that could occur when routing messages 
between A and B: 

Case 1: At least one bit, i, is set in reland. The 
message would be sent through link i of A to a 
node which is one dimension closer to B, and the 
number of bits set in relund would decrease by 1. 

Case 2: There is no bit set in relund. This 
means that either we have reached the destina- 
tion or all the bit differences between A and B 
correspond to IN links in A. Then by using a 
triple link movement, the message would travel 
through three links to get one dimension closer to 
the destination which is the shortest path in this 
case as shown in Proposition 4. 

Thus Algorithm 2 routes messages between 

any two nodes in the Dcube through the shortest 
path. q 

Researchers have proposed a powerful routing 
method to avoid deadlock in interconnection net- 
works using the concept of virtual channels [5]. 
Each group of virtual channels shares a physical 
communication channel (link); however, each vir- 
tual channel has its own queue [5]. In this case, 
deadlock is avoided through the routing algo- 
rithm by ordering the interconnection network 
virtual channels and requiring that messages re- 
quest and use these virtual channels in strictly 
monotonic order [5]. 

To avoid message deadlock in the Dcube, we 
also use the concept of virtual channels. Thus, we 
split each Dcube physical channel into 
(1/2)log(N) + 3 virtual channels where the 
Dcube is of size N. Hence, the virtual channels of 
each physical channel, j, are denoted by 
CX, Ci, C;, . . . , C(1,2),ogov)+2 where we assume C(, 
< C{ < C; < * * * < C(1,2),op(N)+2. Moreover, Ci 
<C: and C:<C! if j<i and y<x. Then, to 
route a message from a source node to a destina- 
tion node in the Dcube, the routing algorithm 
first selects the physical channel and then it 
chooses the virtual channel. We simply use Algo- 
rithm 2 for the selection of the physical channel. 
Virtual channels are chosen in the following way: 

initially, Co,2)log(N)+ 2 channels are used. As long 
as the selected physical channels are chosen in a 
decreasing order, Co,2),op(N)+2 virtual channels 
are chosen. When a physical channel correspond- 
ing to a dimension higher than the dimension of 
the last traversed physical channel must be used, 
the message will take the corresponding 
C o/2)log(N)+1 virtual channel. Then, Co,2)log(N)+ 1 
virtual channels will be used as long as the physi- 
cal channels are employed in a decreasing dimen- 
sion order. When a physical channel correspond- 
ing to a dimension higher than the dimension of 
the last traversed physical channel must be used, 
the message will take the corresponding 
C o,2)logov) virtual channel. This process contin- 
ues until the message reaches its destination. 

Obviously, by using the above described rout- 
ing strategy, it is possible to establish an ordering 
between virtual channels. Hence, the routing al- 
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gorithm would be deadlock-free [5]. Now, it is 
necessary to prove that it will suffice with (l/2) 
log(N) + 3 virtual channels per physical channel 
to route a message from any source to any desti- 
nation. First, each message is routed across use- 
ful dimensions in a decreasing order through the 
c (i/Vog(N)+2 virtual channels using single link 
movements. When we exhaust using all single link 
movements and the message has not reached the 
destination, then we have to use either a double 
link movement or a triple link movement. Remem- 
ber that a double link movement is nothing but a 
triple link movement followed by a single link 
movement. Further, using a triple link movement 
to resolve a single L, difference at link i between 
any two nodes, A and B, involves crossing the 
following dimensions: j, i, j, where j is the most 
significant OUT link in A. For more details, 
please refer to Section 3. Clearly, the sequence of 
physical channels j, i, j are not ordered if they 
use the same virtual channels (i.e. Ci, C;, CL>. 
Thus, we have to establish an order between 
them to avoid deadlock. If A has an odd parity, 
then j > i, as it is the most significant bit in A. In 
this case, if the previous crossed virtual channel is 
k, then we should use the virtual channel k, then 
we should use the virtual channel k - 1 of physi- 
cal link j (CL_,). Next we use the virtual channel 
k - 1 of physical link i <CL _ 1) followed by virtual 
channel k - 2 of physical link j (Ci_,). Hence, 
the sequence of physical channels j, i, j would be 
crossed using the following virtual channels: k - 
1, k - 1, k - 2 which preserve the required order 
for deadlock-free routing (i.e. CL_ i, CL_ i, Ci_2). 
The next step after this triple link movement must 
be a single link movement across a link 1 <j or 
else we have reached the destination. If we have 
to use a single link movement, then we use virtual 
link k - 2 of physical link 1 (CL_,). Hence, the 
maximum number of virtual channel labels 
needed for this double link movement or triple 
link movement is 2 (i.e. k - 1, k - 2). This pro- 
cess continues until we reach the destination. 

On the other hand, if A has an even parity, 
then we may have two cases: either i > j or j > i. 
If i > j, which may happen only for the first triple 
link movement after we exhaust all single link 
movements. In this case, if the previous crossed 

virtual channel is k, then we should use the 
virtual channel k - 1 of physical link j (Ci_,). 
Next we use the virtual channel k - 2 of physical 
link i (C;_,J followed by virtual channel k - 2 of 
physical link j (CL-J Hence, the sequence of 
physical channels j, i, j would be crossed using 
the following virtual channels: k - 1, k - 2, k - 2 
which preserve the required order for deadlock- 
free routing (i.e. CL_,, C;_,, C&,). The next 
step after this triple link movement must be a 
single link movement across a link I< j or else we 
have reached the destination. If we have to use a 
single link movement, then we use virtual link 
k - 2 of physical link 1 (CL_,>. Hence, the maxi- 
mum number of virtual channel labels needed for 
this double link movement or triple link movement 
is 2. If j > i, then if the previous crossed virtual 
channel is k, then we should use the virtual 
channel k - 1 of physical link j (Ci_,). Next we 
use the virtual channel k - 1 of physical link i 
CC;_ 1) followed by virtual channel k - 2 of physi- 
cal link j (CL_,). Hence, the sequence of physical 
channels j, i, j would be crossed using the follow- 
ing virtual channels: k - 1, k - 1, k - 2 which 
preserve the required order for deadlock-free 
routing (i.e. CL_,, CL_,, Ci_,). The next step 
after this triple link movement must be a single 
link movement across a link 1 <j or else we have 
reached the destination. If we have to use a single 
link movement, then we use virtual link k - 2 of 
physical link 1 (CL_,>. Hence, the maximum 
number of virtual channel labels needed for this 
double link moLlement or triple link movement is 2 
(i.e. k - 1, k - 2). Thus, in all cases, whenever we 
need to use a triple link movement (double link 
movement), we must use 2 different virtual chan- 
nel labels to preserve the channel ordering. 

Therefore, in order to determine the maxi- 
mum number of virtual channels per physical 
channel, we have to determine the maximum 
number of triple link movements needed to route 
a message between any two nodes in the Dcube. 
Referring to Section 3, we can easily deduce that 
the maximum number of triple link movements 
between any two nodes, A and B, happens when 
Lo < L, and Lo is equal to IL,/21 + 1 = 
(1/4)log(N) + 1. H ence, the total number of vir- 
tual channels needed to route a message between 
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any two nodes in the Dcube in a deadlock-free 
manner is 1 + [(1/2)log(N) + 21 where the first 
term, 1, corresponds to the number of virtual 
channels needed for the single link movements, 
and the second term, (1/2)log(N) + 2, corre- 
sponds to the number of virtual channels needed 
for the double link movements, and consequently 
the triple link movements. Consequently, if the 
size of the Dcube is Llery large, this would require 
a large number of virtual channels per physical 
channel in the Dcube to achieve deadlock-free 
routing. This is one of the major drawbacks of the 
Dcube. It would be very interesting as a future 
research direction to find the optimum arrange- 
ments of directional links in the Dcube that would 
lead to the least number of virtual channels per 
physical channel to achieve deadlock-free rout- 
ing. 

5. Conclusion 

We have presented a variation of the hyper- 
cube interconnection network where each bidi- 
rectional link is replaced by a directional link. 
The directional hypercube is shown to preserve 
the nice properties of the hypercube such as 
small diameter, high bandwidth, and strong con- 
nectivity. We have shown that the Dcube can 
emulate the hypercube with a small constant 
degradation in time performance under any mes- 
sage distribution. A simple routing algorithm has 
been derived for the Dcube requiring only local 
information to route messages between nodes, 
and it is just a variation of the original routing 
algorithm for the hypercube. Then, the concept 
of virtual channels has been added to the routing 
algorithm to make it deadlock-free. Thus, the 
Dcube may have some potential as a lower cost 
substitute for the binary hypercube in many ap- 
plications. 
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